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Splitting schemes are applied to the numerical solution of a two-dimensional Vlasov 
equation. Results obtained when solving the equation in configuration space, by treating the 
convective term and the acceleration term separately, are compared with results previously 
obtained using a different method where the two-dimensional Vlasov equation was trans- 
formed in velocity space using Hermite polynomials expansion. 

1. INTRODUCTION 

Splitting schemes have been successfully applied to the solution of the Vlasov 
equation [l-3]. For the one-dimensional case [l], the Vlasov equation was integrated 
in the original phase space by applying a method of fractional steps [4], which 
consisted of treating the convective term and the acceleration term separately; these 
terms were computed at each time step using Fourier interpolation and spline inter- 
polation methods, respectively, and the overall scheme was of second order in At. 
The results obtained by this method are very accurate and efficient and can be readily 
extended to higher dimensions. It is the purpose of the present work to extend this 
method to two dimensions. The results obtained by this method will be compared to 
the results previously reported [2] for the numerical solution of the two-dimensional 
Vlasov equation, where the distribution function was first expanded in velocity space 
using a Hermite polynomials expansion, and the resulting equation integrated 
alternatively in the x and y directions. 

In Section 2, we indicate how the method reported in [I] can be extended to two 
dimensions. In Section 3 we present the numerical results obtained for the free 
streaming case, the linear Landau damping, and the nonlinear equation. These results 
are then compared with those recently reported in [2], using the Hermite polynomials 
expansion. Section 4 presents the conclusions. 

2. THE SPLITTING SCHEME 

The generalization of the splitting scheme derived by Cheng and Knorr [l] to 
two dimensions is straightforward; we only have to use the vectorial notation v and r 
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for the velocity and the position, and the derivation of the second-order scheme is 
identical [l]. In order to fix the notation, we indicate here the important steps in this 
derivation. We want to solve the dimensionless system: 

Z( at r, V, t) + v . tL(r, v, t) + E(r, v, t> - g (r, v, t> = 0, 

V.E= 
s m f(r, v, t) dv - 1 
-m 

for periodic boundary conditions in r (the different symbols have their conventional 
meaning). We split Eq. (la) and solve, for the first half time-step, the free streaming 
term. 

gf+v.g=o, 
and for the second half time-step we solve the acceleration term: 

f& + E(r, t) * g = O* 

A formal implicit solution of Eqs. (2)-(3) is given by the following sequence of shifts 
of the distribution function [l]: 

f*(r, v) = f”(r - v b/2, v), (4) 

f**(r, v) = f*(r, v - E(r) At) (5) 

f”+l(r, v) = f **(r - v dt/2, v) 9 (6) 

where dt is the time-step, and the superscript IZ denotes that the quantity is calculated 
at a time-step t = n At. The electric field in Eq. (5) is calculated from f *(r, v) of 
Eq. (4) and used in Eq. (5) to oprate the shift. The formal solution given in Eqs. (4)-(6) 
is equivalent to a second-order scheme in At [l]. We note that the successive shifts 
can be started in either x or y for Eqs. (4) and (6), and in either U, or v, for Eq. (5). 

The solution of the Vlasov equation has thus been reduced to the interpolation 
problems given in Eqs. (4)-(6). A study of the interpolation offin the r and v directions 
has been given for the one-dimensional case in [l]. The generalization to two dimen- 
sions is straightforward. In [l], a Fourier interpolation scheme was used for Eq. (4); 
this, however, requires an execution time proportinoal to N2 (where N is the number 
of points), which increases the computational effort when a large number of points is 
used, or when working with dimensions higher than one. In orqer to minimize the 
computational effort we use, in our case, a cubic spline interpolation [4] where the 
number of operations grows with N only. Whether fin Eq. (4) is interpolated in the 
x direction or in the y direction first is immaterial. The interpolated values f*(r, v) 
are then used to calculate the electric field E(r, t), used in Eq. (5) for the shift. This is 
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started in either the v, direction or the vy direction. A cubic spline interpolation is 
once more used to calculatef**(r, v); the distribution function is finally shifted, as in 
Eq. (6), to obtain f”+l(r, v, t). It should be noted that periodic boundary conditions 
are used in space, while the distribution function f is assumed to be zero for 
/VI >Vmax. 

3. NUMERICAL RESULTS 

A rectangular mesh will be used to represent the r-v phase space with the compu- 
tational domain 

where L, and L, are the spatial periodic lengths in the x and y directions, respectively, 
V, max and V, max are the cutoff velocities for v, and v, , while N, , N, ,2M, , and 2M, 
designate the numbers of mesh points used along the directions X, y, v, , and v, , 
respectively. 

The numerical results described below are intended to demonstrate the accuracy, 
the efficiency, and the stability of the two-dimensional splitting scheme; comparison 
with the previously reported results using Hermite polynomials expansion [2] will be 
made to demonstrate the economy of the present scheme in terms of computational 
effort. 

The first example shows the recurrence effect of the free streaming equation, when 
the electric field in Eq. (la) is neglected, i.e., when solving Eq. (2) alone. The results 
in Fig. 1 have been obtained by plotting on a logarithmic scale the absolute value of 
the density 

(7) 

TIME T 

FIG. 1. Time evolution of the density p(r, t) at positions n = 0, y = 0 (curve:a) and x = L,/4, 
y = 0 (curve b), for the free streaming case, and for the initial conditions in Eq. (8). 
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at the respective positions x = 0, y = 0 (curve a), and x = L,/4, y : 
The initial value of the distribution function is given by: 

fk v, 0) = fo(v>(& cm kzx + A, cm k,y), 

with A, = A, = 0.05, L, = L, = 4~, hence k, = k, = k = 0.5 and 

&(v) = (l/2$?-) e+,2+,“. 

The solution of Eq. (2) is given by: 

f(r, v, t) = f(r - vt, v, 0). 

= 0 (curve b). 

(f-9 

(9) 

(10) 

Equation (lo), combined with Eqs. (7) and (8), leads to the following expression 
for the density: 

p(r, t) = e-k2t2/2(A3C cos k,x + A, cos k,y). (11) 

Numerical calculation of Eq. (7), on the other hand, gives the following expression 
for the density 

+ 4, co&, Y - (j + $1 k, Au, 0). (13) 

The right-hand side of Eq. (13) is the sum of periodic functions of time which results 
in a quasi-periodic behavior for p(r, t) instead of the exponential decay given in 
Eq. (11). In the present calculation k, = k, = 0.5, V, max = V, max = 4, and 
M, = M, = 8. The early parts of the curves in Fig. (1) show the exponential decay 
in time, as predicted by Eq. (1 l), followed by the recurrence effect; for a square matrix, 
like that in the present case, the predicted recurrence time is TR= 2n/(k dv) = 23.56, 
and the numerical results presented in Fig. 1 agree very well with this value. The 
calculations were done using a value of d t = l/S. If, instead of Eq. (8), we use the 
following initial condition 

f(r, v, 0) = &(v)(l + A, cm kx f A, Cos ky) (14) 

(where&(v) is given in Eq. (9)) we get, instead of Eq. (1 I), the following expression 
for the density 

p(r, t) = 1 + e--IC1t2/e(Az cos kx + A, cos ky). (15) 
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FIG. 2. Time evolution of the density p(r, t) at positions x = 0, y = 0 (curve a) and x = L,/4, 
y = 0 (curve b), for the free streaming case, and for the initial conditions in Eq. (14). 

Numerical calculation, however, gives the same expression for the density as in 
Eq. (12), provided p(r, t), in the right-hand side of this equation, is replaced by 
Mr, t> - 1). Th e results in this case are shown in Fig. 2, where the absolute values of 
p(r, t) are plotted on a logarithmic scale against time, for the positions x = 0, y = 0 
(curve a), and x = L,/4, y = 0 (curve b). The parameters are the same as in Fig. 1. 
As can be verified from Eq. (15), log 1 p I -r 0 as t + co, and the curves in Fig. 2 
tend asymptotically to 0, in agreement with Eq. (15). A recurrence effect occurs at a 
recurrence time TR = 23.56. 

The full curve presented in Fig. 3 has been obtained for the linear Landau damping, 
by solving the linearized form of Eq. (1). The initial condition was, for the linearized 
part of the distribution function 

f@, v, 0) = 4h(v) cm k& cm by, (16) 

with A, = 0.05, k, = k, = 0.5, andf,(v) as given in Eq. (9). While the full curve 
has been obtained with the scheme of interest here, the dotted curve has been obtained 

,L- --I- - 
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FIG. 3. Numerical solution for the linearized 2D Vlasov equation. Full curve: direct integration 
in phase space; Dotted curve: the distribution function is first transformed in velocity space using 
Hermite polynomials expansion. 
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using the Hermite polynomials expansion of the distribution function [2], and is 
given here for reference. With both methods the Fourier mode E&0.5,0.5) of the 
x component of the electric field E, and the Fourier mdoe E&0.5, 0.5) of the y 
components of the electric field E, are present, at t = 0, and decay exponentially in 
time while remaining exactly equal to each other. The dotted curve has been obtained 
with a mesh of 8 x 8 points and 40 x 40 polynomials, and necessitated a compu- 
tational time (CPU time) of about 250 min using an IBM 370/155; a time-step 
d t = l/16 was used because the code was found to be numerically unstable for larger 
values of d t. The full curve was calculated using the same initial conditions (Eq. (16)) 
that were used for the dotted curve, and the calculations were carried out up to the 
same maximum time (t = 18.75); meshes of 8 x 8 points in configuration space 
and 32 x 32 points in velocity space were used, so that the dimensions of the matrices 
were approximately equal to those previously used in the case of Hermite polynomials 
expansion. The execution time in this case (CPU time) was about 67 min compared 
with 250 min for the Hermite polynomials expansion (using the same IBM machine). 
An important part of the economy in execution time is due to the fact that the calcu- 
lations were made with a value of dt = l/8, without any numerical instability 
appearing. We note, however, that fit has been increased only by a factor of 2, while 
the actual decrease in computation time is by a factor 250/67 = 3.7. Furthermore, 
the present calculations give w/wp = 1.675 and y/wp = 0.400 (where w and y are 
the real and imaginary parts of the frequency, respectively, and wD is the plasma 
frequency), in much closer agreement with the theoretical values (w/wr, = 1.682, 
YbP = 0.394) than the values obtained using the Hermite polynomials expansion [2] 
(o/wp = 1.58, y/wi, = 0.35). 

Finally, Figs. 4-6 show the results obtained when solving the full nonlinear Vlasov 
equation, using the same initial conditions that were used for Eq. (14). These con- 
ditions were also used when solving the full nonlinear equation using a Hermite 
polynomials expansion with meshes of 16 x 16 points and 30 x 30 polynomials, 
as reported in [2]. For the present calculations we use a mesh of 16 x 16 points in 
configuration space and a mesh of 32 x 32 points in velocity space; the dimensions 

0 5 10 
TIME T 

FIG. 4. Plot of the logarithm of the fundamental mode 1 I&(0.5,0)1 for the solution of the non- 
linear Vlasov equation, using the initial condition in Eq. (14). 
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FIG. 5. Plot, on a logarithmic scale, of the magnitude of the mode &(l, 0) which is excited when 
solving the full nonlinear equation. The dotted curve corresponds to the curve obtained in [2] by 
expanding the distribution function in velocity space using Hermite polynomials. 
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FIG. 6. Plot, on a logarithmic scale, of the magnitude of the mode E&OS, 0.5) which is excited 
when solving the full nonlinear equation. The dotted curve corresponds to the curve obtained in 
[2] by expanding the distribution function in velocity space using Hermite polynomials. 

of the matrices are thus approximately equal to those for the Hermite expansion 
method. It took about 90 min of execution time, with a time-step At = l/8, to pursue 
the calculations up to t = 10.0, using an IBM 370/168. 

One expects linear Landau damping to dominate at the early evolution of the system, 
and, in agreement with this, the two mdoes E&OS, 0) and E,,(O, 0.5), present at t = 0, 
were found to decay linearly and to remain exactly equal to each other, up to t = 10.0. 
Figure 4 shows the plot of j &.,(0.5,0)[ on a logarithmic scale. The numerical values 
of w/oP and y/wP are 1.42 and 0.154, respectively, which agree fairly well with the 
theoretical values of 1.415 and 0.1533, respectively. The corresponding results reported 
in [2], when using the Hermite polynomials expansion, necessitated an execution 
time of almost 4 hr, using the same IBM machine, with a time-step At = l/16 (larger 
values of At resulted in numerical instabilities). The fundamental mode in that case 
decayed linearly [2], with W/U+, = 1.48 and y/wp = 0.158, and, hence, had a behavior 
almost identical to that observed in Fig. 4. 

Figure 5 and 6 show the higher modes ETk(l, 0), and E&0.5,0.5); the amplitudes 
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of these modes are found to remain at least two orders of magnitude smaller than that 
of the fundamental Ezk mode. Furthermore, these two modes were found to be 
identical in behavior to the two modes Eyk(O, 1) and E,,(0.5, 0.5), respectively. The 
dotted curves in Figs. 5 and 6 show, for comparison purposes, the results previously 
obtained using the Hermite polynomials expansion [2]. For the higher modes, as can 
be seen, small differences exist between the curves obtained by the two techniques 
discussed. 

4. CONCLUSION 

In the present work, we have compared the results obtained for the solution of a 
two-dimensional Vlasov equation, using two different splitting schemes: one in which 
the equation is integrated in phase space, by treating the convective term and the 
acceleration term separately, and another, previously reported in [2], where the 
equation is first transformed in velocity space using Hermite polynomials expansion. 
The present results show that for the range of parameters used, the method of direct 
integration in phase space is more accurate and more economical than the method 
previously reported in [2]. Most of the economy is due to the fact that the presently 
reported results were calculated with dt = l/S, while for the method reported in [2], 
the calculations were done with At = I/ 16, since higher values of d t were accompanied 
by numerical instabilities. What advantage this method may have in other parts of 
the parameter space (especially for very small values of the wavenumbers) is still to 
be investigated; we note, however, that the method has been recently extended to a 
three-dimensional magnetized plasma [6], with a time-step At which can be of the 
order of 1, which makes it even more advantageous than was reported in [2]. 
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